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Abstract

The rapid progress of Natural Language Processing (NLP) technologies has led to the widespread

availability and effectiveness of text generation tools such as ChatGPT and Claude. While highly useful,

these technologies also pose significant risks to the credibility of various media forms if they are

employed for paraphrased plagiarism—one of the most subtle forms of content misuse in scientific

literature and general text media. Although automated methods for paraphrase identification have been

developed, detecting this type of plagiarism remains challenging due to the inconsistent nature of the

datasets used to train these methods. In this article, we examine traditional and contemporary approaches

to paraphrase identification, investigating how the under-representation of certain paraphrase types in

popular datasets, including those used to train Large Language Models (LLMs), affects the ability to

detect plagiarism. We introduce and validate a new refined typology for paraphrases (REPARAPHRASED,

REfined PARAPHRASE typology definitions) to better understand the disparities in paraphrase type

representation. Lastly, we propose new directions for future research and dataset development to enhance

AI-based paraphrase detection.

Index Terms

Paraphrase Identification, Deep Learning, review, plagiarism, datasets.

Corresponding author: daniel.acuna@colorado.edu

C. Zhou did this work while a master’s student at Syracuse University, NY, USA).

C. Zhou is with SingularDance, Shanghai, 200081 China (e-mail: joseph.zhou@singulardance.com).

C. Qiu is with the College of Arts and Science, Vanderbilt University, Nashville, TN 37235 USA (e-mail:

cheng.qiu@vanderbilt.edu).

L. Liang is with the School of Information Science, Syracuse University, Syracuse, NY 13244 USA (e-mail: lliang09@syr.edu).

D. E. Acuna is with the Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309 USA.

ar
X

iv
:2

21
2.

06
93

3v
3 

 [
cs

.C
L

] 
 8

 O
ct

 2
02

4



2

I. INTRODUCTION

The development of new text generation methods, such as GPT-3 [1] and ChatGPT [2], has

facilitated the creation of paraphrased text. Such advancement raises concerns about the ability

to accurately identify paraphrased content in order to protect the credibility of media sources and

science. Automated paraphrase identification approaches are being developed and used to detect

paraphrased text, but the limitations of current methods have been discovered and discussed.

A study that examined fifteen common plagiarism detection tools [3] found that most of these

tools were unable to detect paraphrased content. In our paper, we investigate traditional language

models and deep learning methods for paraphrase identification, and examine the limitations of

current datasets, methods, and evaluation metrics used in this field [4]–[9]. The paper also

presents a typology of paraphrases that can be used for constructing new datasets, and proposes

potential directions for future research in this area. We also discuss the unprecedented threats

posed by Large Language Models (LLMs).

Paraphrase identification (PI) is beneficial for several significant natural language process-

ing (NLP) applications. For instance, a summarization system can eliminate redundancy when

generating summaries by removing paraphrases [10]. Additionally, paraphrases can be used to

improve the performance of question-answering systems [11]. Perhaps most notably, paraphrase

identification is essential for detecting plagiarism. In education [12], paraphrase identification

can be used to evaluate whether a student’s submission or answer is semantically equivalent to

a reference answer, or to detect paraphrased content in academic papers [13].

There is a rich history of datasets and methods for paraphrase identification. Traditional

approaches typically rely on hand-crafted rules [14], [15], whereas more recent techniques have

leveraged deep learning to achieve improved results. Many classic NLP tasks, such as machine

translation [16], [17], text summarization [18], and dialogue systems [19], can be viewed as

paraphrase identification and generation tasks. As such, advances in these areas have also

translated into improvements in paraphrase identification. For example, a number of studies have

demonstrated that deep learning models can achieve state-of-the-art performance for detecting

sophisticated paraphrases [10], [20], [21]. The long history of this field is closely tied to the

development of artificial intelligence itself.

Although many paraphrase identification datasets and methods have been proposed, a compre-

hensive understanding of their achievements and challenges is still lacking. The main challenges
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of paraphrase identification lie in two aspects: First, no large and balanced training datasets

exist for paraphrase identification. Most manually labeled training corpus has limited data points

because labeling paraphrases requires extensive linguistic knowledge. At the same time, large-

size auto-generated datasets are corpus that are translated forward and backward (known as

back-translations), limiting paraphrase structures. Second, detection models fail to detect long

and complex paraphrased passages with sophisticated modifications. Traditional methods mainly

focus on paraphrased sentences’ lexical and syntactic information, making it hard to represent

and detect complex semantic features. Recent deep learning neural network models can extract

and represent semantic information from paraphrased well by learning from the training corpus.

However, many of the datasets used for these models lack a well-balanced distribution of para-

phrase types, and in some cases, do not include certain types of crucial paraphrases. For example,

the same-polarity substitution type, which replaces a synonym with the target word, is one of

the most common paraphrase types in back-translation corpora. In contrast, opposite-polarity

substitution should modify the structure using antonyms to maintain semantic consistency. This

method is commonly found in human literature yet it is empirically hard to see in the generated

training corpus (We have experiments showing this empirical result in section V).

In this survey, we explore how the types of paraphrases present in standard datasets impact

identification and generation tasks. We provide a comprehensive review of these datasets and

summarize the different classification schema of paraphrases that different datasets contain.

Previous research has focused on classifying paraphrase identification methods [22], [23], but

has not examined the crucial relationship between datasets and methods. As such, we also

review a range of traditional and modern (e.g. deep learning-based) methods for paraphrase

identification. Our results suggest that identification accuracy can be improved by carefully

curating the paraphrase type distributions in training datasets. Furthermore, we discuss how

these distributions can affect paraphrase generation. Our key contributions include:

1) A refined paraphrase typology

2) A review of paraphrase identification methods

3) An automatic paraphrase type classifier

4) A new typology of paragraphs and their distribution across datasets

5) A discussion of how to create a dataset that will maximize the paraphrase identification

accuracy.
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II. DEFINITION AND TYPOLOGY OF PARAPHRASING

According to the Oxford Language Dictionary, paraphrasing is defined as ”a rewording of

something written or spoken by someone else” [24]. In other words, paraphrases are sentences

or phrases that convey the same underlying semantic meaning using different wording. For the

purpose of analysis, this definition lacks the specificity of the properties that constitute semantic

equivalence between two texts. For instance, there may be non-paraphrases with similar structures

and words but different meanings. Thus, a more concrete definition is necessary to more precisely

encapsulate the concept of semantic equivalence.

Past research has also investigated the definition of semantic equivalence from various perspec-

tives. In textual entailment, semantic equivalence is often viewed as a bidirectional relationship

between two texts, where the meaning of one text can be inferred from the context of the other,

and vice versa [25]. From the perspective of propositional logic, semantic equivalence is defined

as the degree of symmetry between two texts, such that one text is a (not necessarily proper)

subset of the other [26]. This definition allows for paraphrases that do not perfectly capture

the meaning of the original text. Alternatively, [27] argued that the morphological structure of

a sentence is not uniquely linked to its meaning and that the semantic meaning of a sentence

is instead determined by the specific elements that make it up. From this perspective, semantic

equivalence can be measured by the distribution of words, where sentences with a high degree of

word overlap in similar contexts are considered semantically equivalent [28]. More recently, [29]

proposed that paraphrases should exhibit properties of a paraphrase category known as Quasi-

paraphrases, which are defined as ”approximate equivalence that conveys similar meanings using

different words”. They identified 25 distinct paraphrase operations that can be used to produce

quasi-paraphrases. While this definition is less restrictive than others, it may still be susceptible

to ambiguity, as it does not account for the speaker’s perspective or evaluation of a situation.

Given the ambiguity in its definition, paraphrases should be defined more concretely than

is commonly understood. We adopt the definition of quasi-paraphrases proposed by [29] as

a starting point, and use it to expand, review, and refine a paraphrase typology in the next

section. By doing so, we aim to provide a more rigorous and scientific approach to understanding

paraphrases and their role in natural language processing.
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A. Paraphrase Types Overview

We propose the REfined PARAPHRASE typology definitions (REPARAPHRASED) as an exten-

sion of the Extended Paraphrase Typology (EPT) proposed by [30]. REPARAPHRASED combines

the categorization of EPT with non-overlapping paraphrase types proposed by [29], and intro-

duces new paraphrase operations, such as relational substitutions and verbatim paraphrasing.

Additionally, the ”modal verb changes” in EPT have been expanded to include functional word

substitutions, a broader class of paraphrase operations. By providing a more comprehensive and

accurate representation of paraphrase types, REPARAPHRASED enables a deeper understanding

of the effect of type distributions on downstream tasks such as paraphrase identification and

generation. REPARAPHRASED contains a total of 24 paraphrase types, as shown in Table I.

B. Paraphrase Types

a) Same Polarity Substitutions: Same polarity substitutions, also known as synonym sub-

stitutions, involve the replacement of a word or phrase of the sentence with one of its synonyms.

Same polarity substitutions have three subtypes: 1. habitual (replacing a verb with its synonym),

2. contextual (replacing a phrase with an equivalent phrase based on context), and 3. named

entities (replacing a noun with its equivalent alternative).

1) I dislike doing extra work. ⇐⇒ I hate doing extra work.

2) Their bank account balance reached the maximum insured amount ⇐⇒ Their bank

account balance was at least 250 thousand dollars

3) Mr. Smith just bought a new computer ⇐⇒ Bob just bought a new computer

b) Opposite Polarity Substitutions: Opposite Polarity Substitutions are also known as antonym

substitutions, where words and phrases in a sentence are replaced by their negated antonyms.

There are two types of substitutions in this category: 1. habitual (main verb or adverbs are

replaced by one of its antonyms) and 2. contextual (phrases are replaced by their alternative

with opposite meanings)

1) The program runs fast ⇐⇒ The program does not run slowly

2) A spike in sales performance will save the company from bankruptcy ⇐⇒ Only a spike

in sales performance will halt the company’s bankruptcy.

c) Converse Substitution: Converse substitution involves the relational substitution of a

word in a sentence by its relational pair with an opposite viewpoint.

I bought a plane ticket online ⇐⇒ A plane ticket was sold to me online
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d) Inflectional Changes: Inflectional changes involve the inflection of nouns (usually in-

flected for numbers) and the inflection of verbs (inflected for tense).

Increase in salaries is often a great indicator of performance ⇐⇒ Increase in salary

is often a great indicator of performance.

e) Sentence Modality Changes: Sentence modality changes involve the overall change in

the expression of perspectives regarding certainly toward the subject of the sentence.

Does working in that technology company pay well? Does it provide great 401k plans

for its employees? ⇐⇒ They will work at the company to get high pay or to obtain

great 401k plans.

f) Functional Word Substitution: Functional word substitution involves substituting a func-

tional word in a sentence with another functional word.

Is this your own work? ⇐⇒ Is that your own work?

g) Spelling Changes: Spelling changes involve changes through contractions (combining

two words) or verb conjugations.

The countless hours spent practicing did not improve our performance ⇐⇒ The

countless hours spent practicing didn’t improve our performance

h) Structure/Discourse Changes: Structure and discourse changes involve changes in the

referencing context of the discourse in a sentence.

How he would stare! ⇐⇒ He would surely stare!

i) Relational Substitutions: Relational substitutions involve the substitution of a word or

phrase by its relational counterparts. The relational counterparts are defined in two ways: 1.

agent(action)/action(agent) substitution, and 2. manipulator/device substitution.

1) Jacob programmed the game ⇐⇒ the game’s programmer is Jacob

2) That driver is speeding on the highway ⇐⇒ That car is speeding on the highway

j) Derivational Changes: Derivational changes involve the change of a verb to its adjective

form in a sentence.

There are many accounts of that hero’s legacy all differing in perspectives. ⇐⇒ There

are different versions of that hero’s legacy.

k) Direct/Indirect Style Alternation: Direct and indirect style alternation involves the chang-

ing of voices in a sentence such as from active to passive voice and vice versa.
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“You must finish the project by the end of today,” demanded my manager ⇐⇒ My

manager demanded that I must finish the project by the end of today

l) Punctuation Changes: Punctuation changes involve the change of punctuation used in

the sentence.

These numbers, interestingly, seem to appear in the world around us. ⇐⇒ These

numbers interestingly seem to appear in the world around us.

m) Coordination Changes: Coordination changes involve the connection of two related

sentences through the use of conjunctions.

The most popular sport in the world is Basketball. In addition, it is also the sport that

pays its athlete the most. ⇐⇒ The most popular sport in the world is Basketball , and

it is the sport that pays its athlete the most.

n) Ellipsis: Ellipsis involves the omission of clauses that are understood from the context

of the remaining sentence.

Alice started the homework a few weeks prior to the deadline but was unable to finish it

before the deadline. ⇐⇒ Alice started the homework a few weeks prior to the deadline,

but she was unable to finish it before the deadline.

o) Negation Switching: Negation switching involves changing the negation in a sentence

with an equivalent alternative.

We need not any complicated equations ⇐⇒ We do not need any complicated equa-

tions

p) Diathesis Alternation: Diathesis alternation, also known as verb alternation, involves the

alternation of the arguments of a sentence.

Alice presented the gift to Bob. ⇐⇒ Alice presented Bob with the gift.

q) Subordination and Nesting Changes: Subordination and nesting changes involve substi-

tuting an element within the sentence by an overarching class that the element belongs to or by

a member of that element.

All spoken languages are natural languages ⇐⇒ The English language is a natural

language

r) Synthetic/Analytic Substitution: Synthetic and analytic substitution involves elaborating

the syntactic attributes of a word or phrase.

Comments ⇐⇒ A variety of comments
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s) Change Of Order: Change Of Order involves changing the order of a word or phrase

in a sentence.

Initially, we begin with the scientific method ⇐⇒ we begin with the scientific method

initially

t) Change of Format: Change of format involves changing numerical numbers and symbols

to their written counterparts and vice versa.

two hours ⇐⇒ 2 hours

u) Addition/Deletion Changes: The addition and deletion changes involve the addition of

new details or the deletion of existing details from a sentence.

Yesterday, we were able to complete our assignment and submit it on time ⇐⇒

Yesterday evening at 12:30 PM, we were able to submit our assignment on time

v) Entailment: Entailment involves substituting a phrase within a sentence with another

phase in which the original phrase entails.

A highly-regarded company bought its competitors ⇐⇒ A highly-regarded company

intends to buy its competitors

w) Verbatim: Verbatim is a type of plagiarism where a sentence is copied without changing

any aspect of the sentence.

The algorithm performed well on this dataset ⇐⇒ The algorithm performed well

on this dataset

x) Identity: Identity closely resembles verbatim, and the main difference between the two

is that identity usually copies a subsection of a sentence or phrase.

The manager told us that we have two more days to complete the project ⇐⇒ Our

boss texted in our work channel that we have two more days to complete the project

III. PARAPHRASE IDENTIFICATION REVIEW

Paraphrase identification (PI) determines the semantic similarity of two phrases or texts based

on quantitative measurements [31], [32]. The methods of PI have been extensively integrated

into tasks such as paraphrase recognition, classification, and detection [33]. In this section, we

classify paraphrase recognition methods based on traditional approaches and deep neural net-

works as modern approaches. This section briefly reviews traditional techniques and approaches
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Fig. 1. Traditional Approaches and Techniques on paraphrase identification are mainly classified as knowledge-based and

corpus-based. Each of them has various branches. We review the three most used ones for each category.

for PI, including knowledge-based and corpus-based methods. Traditional approaches focused

on two domains of linguistics: morphology and syntax, which were widely adopted and taken

as benchmarks by modern approaches. Then we review modern techniques that leverage deep

learning, following the challenges of paraphrase identification with traditional methods. We also

provide the main architectures of all methods in Fig. 2 for future research.

A. Traditional approaches and techniques for paraphrase identification

Before the advent of deep learning, rule-based and non-neural-network-based methods were

applied to PI tasks. These traditional methods are mainly divided into knowledge-based and

corpus-based methods. Knowledge-based methods tend to use common sense knowledge from

lexical database sources such as dictionaries, WordNet [34], and dependency trees. Corpus-

based measures capture the semantic similarity of words and texts calculated from data rather

than compiled knowledge rules. Most corpus-based methods are probabilistic. Researchers often

combine techniques from both methods. Figure 1 shows the tree structure of traditional and

modern approaches and techniques for PI.
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1) Knowledge based approaches: One of the traditional approaches to identifying paraphrases

involves using WordNet, a lexical database of semantic relations [34]. In this approach, synonyms

and hypernyms from WordNet are used to filter possible paraphrases and reduce the scope of the

identification task. For example, in [35], researchers used six WordNet-based metrics to explore a

text-to-text approach to identifying paraphrases. They transformed concept-to-concept similarity

into word-to-word similarity by selecting words in WordNet relationships. In [36], a modified

edit distance algorithm was run on WordNet relationships between words to handle synonyms,

resulting in a 0.6% improvement on a standard semantic equivalence task.

However, the effectiveness of WordNet relationships in identifying paraphrases is limited by

their small lexical coverage and lack of vocabulary diversity. In an effort to expand the use of

WordNet relationships, [37] mapped the Paraphrase Database (PPDB) to WordNet to predict

WordNet synset membership of pairs that did not exist in WordNet. This approach resulted in

an accuracy of 89% when expanding from approximately 155,000 words in WordNet to over 74

million words. Despite this progress, there is still room for further improvement in the use of

WordNet-based approaches for identifying paraphrases.

a) Statistical Machine Translation based approaches: The use of Statistical Machine Trans-

lation (SMT) evaluation has been shown to be effective in identifying semantic paraphrases at

the sentence level. In [36], machine translation evaluation methods such as BLEU [38], NIST

[39], WER [40], and PER [41] were utilized to build a paraphrase classifier. The authors also

employed an SVM to classify paraphrased and non-paraphrased sentences based on the feature

vectors produced by the machine translation evaluation systems. This research has inspired other

researchers to map MT evaluation approaches to paraphrase identification methods. For example,

in [42], the use of dependency-based features such as Part-of-Speech (POS) resulted in a 4.4%

accuracy improvement and a 6% F1 improvement. In [43], five novel MT metrics (TER-Plus [44],

METEROR [45], SEPIA [46], BADGER [47], and MAXSIM [48]) were tested on the MSRPC

dataset. The results showed that using MT evaluation metrics alone had good performance on the

MSRPC dataset. However, the use of MT evaluation metrics alone may not always be effective in

identifying paraphrases, especially in complex datasets such as the Plagiarism Detection Corpus

(PAN) [49].

b) Parsing tree-based approaches: One approach to identifying semantic paraphrases is the

use of parsing trees, which compare texts by their underlying tree structures that represent them.

Syntactic parsing trees, such as those built using the Penn Treebank dataset [50], are constructed
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using POS tagging, syntactic bracketing, and disfluency annotation schemes. The Penn Treebank

has significantly influenced NLP research, and has been used to train syntactic classifiers for

paraphrase identification. For example, in [51], the authors showed that the Penn Treebank can

be used to build improved English dependency parsing models, leading to an increase in the

quality of paraphrase detection. In [52], the authors combined n-gram features with syntactic

features from the dependency tree to improve paraphrase detection.

Another type of parsing tree is based on semantic features, known as semantic parsers. These

parsers are designed to construct the meaning behind a given sentence. Most previous research

in this area [53]–[55] has relied on large amounts of human annotation to build semantic parsers.

However, this can be time-consuming and expensive. To address this, [56] proposed a weakly

supervised semantic parsing method that does not require fine-grained annotations. [57] presented

a translation-based weakly supervised semantic parsing method that translates questions into

answers.

One approach that has gained traction in recent years is the use of Abstract Meaning Repre-

sentation (AMR) to assign precise semantic representations to sentences with the same meaning

[58]. Approaches based on AMR have evolved from depending on monolingual datasets to using

multilingual datasets, and have achieved state-of-the-art performance on this task [59]–[65]. The

use of AMR allows for the effective identification of paraphrases across languages and has

proven to be a powerful tool in the field of semantic paraphrase identification.

2) Corpus-based approaches:

a) Matrix factorization-based approaches: Matrix factorization is a common technique for

reducing the dimensionality of matrices in semantic paraphrase identification tasks. Singular

value decomposition (SVD) is the most widely used matrix factorization method in this context.

Latent semantic analysis (LSA), first proposed by [66], is a corpus-based measure that can be

used for semantic similarity by using SVD to reduce the dimensionality of the term-document

matrix representing the corpus. This decomposition can be seen as a by-product of the term

co-occurrence matrix in a corpus. For example, in [35], the authors apply LSA word similarity

measures on a pseudo-document text representation, combining it with a TF-IDF weighting

scheme. In [67], the authors show further improvement when unseen words are given additional

weight. These methods generally treat sentences as pseudo-documents in an LSA framework

and identify paraphrases using similarity in the latent space.

In [68], the authors propose an improved discriminative term-weighting metric (TF-KLD)
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inspired by LSA approaches, combined with SVM. Similar to another data mining approach,

linear discriminant analysis (LDA), the basic intuition behind this method is to use SVD to

perform factorization on the co-occurrence matrix, with the addition of a non-negativity constraint

[69] in the latent representation based on non-orthogonal basis. Unlike previous related methods,

this approach increases the weights of discriminative distributional features while decreases the

weights of features that are not. To re-weight the features in the matrix, the authors apply

KL-divergence before the matrix factorization. This contribution has inspired other researchers

to explore other features and supervised classification approaches in matrix factorization-based

models.

One limitation of TF-KLD models is the inability to define weights for words that do not occur

in the training corpus. To address this, [70] propose a new scheme called TF-KLD-KNN, which

is based on TK-KLD and aims to solve the problem of unseen words by computing the weight

of the unknown unit as the average of the weights of its k nearest neighbors. This approach

allows for the effective identification of paraphrases even when the words in the sentences do

not occur in the training corpus.

Overall, matrix factorization-based approaches have proven to be effective in identifying

semantic paraphrases, particularly when combined with other techniques, such as SVM and

KL-divergence. These methods have been applied to a wide range of datasets and have shown

promising results in identifying paraphrases across languages and domains.

b) N-gram based approaches: The concept of n-grams was first introduced by [71] in the

form of a Markov chain, and was later applied to communication by [72]. Researchers have used

n-grams as a feature-based approach in semantic paraphrase identification tasks. In the early days

of research in NLP, [73] used n-grams in speech recognition systems, and [74] applied n-grams

in their Natural Language Understanding (NLU) system.

More sophisticated n-gram modifications have been used in paraphrase identification tasks.

Bilingual evaluation understudy (BLEU) [38], which compares the n-grams of a candidate text

with the n-grams of a reference translation, has become a widely used method for evaluating

paraphrases.

In [51], the authors proposed a logistic regression model incorporating surface features from

n-grams as a probabilistic lexical overlap model (e.g., the precision and recall of n-gram overlaps

between two target paraphrases), and combined it with hidden loose word alignment approaches

(following [75], they loosely matched the nodes of the syntactic trees of the two targets). They
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also followed [76] in treating the correspondences as latent variables and using a WordNet-based

lexical semantics model to generate the target words.

Recent approaches based on the n-gram idea have sought to improve upon this method by

incorporating syntactic advantages. For example, [52], [77], [78] proposed syntactic n-grams,

which do not use text directly but rather rely on syntactic dependency analysis trees. However,

these methods still face the challenge of scaling well to longer sequence lengths, as [79] have

shown that n-grams can be deceived by lexical and syntactic overlaps.

c) Support Vector Machine-based approaches: In 2005, Microsoft researchers proposed a

novel paraphrase dataset [80]. They used an annotated dataset of clustered news articles from [81]

and hand-annotated pairs of sentences judged to be paraphrased. To make the paired comparison

more relevant, they used a Support Vector Machine (SVM) to refine the labeling process. This

work also showed that SVMs can be effectively used for paraphrase identification, as they are

robust to noise in training data and can handle sparse features from paraphrase detection tasks.

Moreover, an appropriate choice of an SVM kernel function can prevent overfitting in low-

resource datasets.

The fundamental idea behind SVM-based paraphrase identification is to use language entities

(e.g., letters, words, sentences) in classification tasks to determine the similarity that is considered

paraphrasing. For example, [82] improved SVMs with a special string-focused kernel [83] to

measure the similarity of non-fixed size feature vectors in the language model. Others have

adapted the more traditional Radial Basis Function (RBF) to effectively detect paraphrases in

large datasets. [84] adapted kernels that fit large datasets with a small number of features. While

SVMs are widely used in paraphrase identification, high dimensionality and sparseness in real

datasets make the use of SVM in real-world scenarios impractical.

B. Paraphrase Identification with Deep Learning

Paraphrase identification is a fundamental task in natural language processing (NLP). Dis-

tributed representations of words, high dimensional real-valued vectors, were proposed decades

ago ( [85]–[88]). Traditional distributed representations were based on unsupervised statistical

language models, such as n-gram overlaps. However, these overlaps can be time-consuming to

compute, a fact that led to the development of neural network structures that can predict word

embeddings directly (e.g., [89], [90]). Neural probabilistic language models were introduced to

address the curse of dimensionality by learning a distributed representation of words ( [87]).
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This allowed for the training of large models with millions of parameters within a reasonable

time. The distributed representations can be used for paraphrase identification tasks based on

their similarity, and researchers are continuing to find more accurate and efficient methods based

on this idea.

Techniques and approaches initially designed for downstream tasks, such as question answering

(QA), recognize text entailment (RTE), natural language inference (NLI), and semantic text

similarity (STS), can also be applied to paraphrase identification tasks. In this section, we

introduce mainstream approaches that have been applied to paraphrase identification tasks. Deep

learning approaches to paraphrase identification often have many overlapping intersections. We

also provided Table III which describes the challenges of each model. Figure 2 shows the

relationships between the works reviewed.

1) Compositional Distributional Semantics (Word Level): The main challenge of paraphrase

identification is the semantic similarity between two candidate sentences. Compositional distri-

butional semantics provides a computationally efficient way to get the semantic representation of

a whole sentence by combining the meanings of individual words in it. Word-level features, also

an important part of local information, are crucial for fine-grained meaning extraction. While

traditional methods discussed above have introduced related concepts and did some experiments

on extracting semantics, the mainstream solution of semantic similarity identification was inspired

by the introduction of word embedding. Word embeddings trained by neural networks have

been shown to capture syntactic and semantic regularities in language [117]. A specific model

for computing word embeddings using neural networks was proposed in [118], introducing

Word2Vec. Word2Vec embeddings build upon not only the n-gram features of sentences but also

higher-level correlations between words and their contexts. Word embeddings such as Word2Vec

and others (e.g., GloVe [119]) provided a new research direction for the PI task, achieving high

performance because they are computationally efficient and reasonable on meaning composition.

There are two mainstreams of word-level challenge solutions: Simple Word-Embedding-Based

Models (SWEMs) and word-alignment-related techniques. Simple Word-Embedding-Based Mod-

els (SWEMs) is a solution that relies on finding and optimizing compositional combinations by

using word embeddings. Moving beyond simple word embeddings can be a challenge. One

naive method is to average the word embeddings that make up a sentence, which is an order-

insensitive method. Early attempts to apply this to paraphrase identification focused mainly on

word embeddings and word-alignment methods. For example, [91] forms sentence representations
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Fig. 2. Early Architectures consist of simple embedding approaches and shallow neural networks on PI tasks. Traditional

deep neural networks (TDNNs) contain two mainstream neural networks: CNNs and RNNs, and their improvements on PI

tasks. Mechanism Modules include substantial independent improvements on PI tasks. Transformer-based structures incorporate

modern transformers on PI or downstream tasks.

by summing up word embeddings. Similarly, [92] applied these two ideas in SemEval-2014 to

compare the semantic similarity of sentences and achieved the highest overall performance in the

competition. Building on the work of [35], which used improved word alignment and similarity

measures, [93] proposed enhancements to word embeddings and alignments for the PI task.

However, this approach was only slightly improved due to its inherent order insensitivity. More

complex corpora and semantic features are needed to consider word order. Despite this, word

embeddings provided a strong foundation for later research on paraphrase identification using
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neural networks. One improved idea based on SWEMs was proposed by [96]. In their work,

they improved SWEMs with associated pooling mechanisms. They combined max pooling and

hierarchical pooling (i.e., the hierarchy given by the tree structure of semantic parsing) to solve

the order-insensitive challenge and incorporated some handcrafted modifications. Although they

did not achieve SOTA performance on semantic test similarity tasks, their simple structure is

still competitive compared with other neural network approaches. To resolve the word order

issue of SWEMs, [96] introduced a hierarchical pooling layer to keep track of the local spatial

information of a text sequence. Instead of learning the local spatial information via count features,

they learn fixed-length representations for the n-grams that appear in the corpus.

Another solution to this challenge is using word alignment or word-to-word attention tech-

niques to enhance the models’ performance in getting fine-grained word-level semantic corre-

spondences. For example, [94] added a pairwise word interaction layer to capture the semantic

correspondences. The approach focuses on the interaction of words and selects the important

word interaction for similarity measurement. Their model alleviates the issue of local information

missing in coarse-grained sentence semantic models. At the same time, the attention mechanism

has been proven efficient in capturing word-level features because it fixes the limitation of

Long Short-Term Memory (LSTM) cell state—a very common recurrent neural network design

that suffers from not being able to capture long-term dependencies. [95] applies word-by-word

attention to a recognizing textual entailment (RTE) issue. Like the paraphrase identification task,

they do not use attention to generate words but to obtain a sentence-pair encoding from fine-

grained reasoning via soft alignment of words. Their ablation test showed that word-by-word

attention yielded another 1.2 percent improvement and empirically shows it’s more reasonable

in capturing the keywords in a sentence. An advanced approach to solving the word-alignment

challenge proposed by [97] was inspired by multiway attention. They concatenated two widely-

used attention to model the interactions between sentences and proposed two other functions

to calculate the word relation by the element-wise dot product and difference of two vectors.

The matching-aggregation framework of their work combined matching information by two Bi-

LSTMs and passed them through an attention-pooling layer to a multilayer perceptron for the final

decision. These word alignment and attention-based approaches have significantly improved the

ability of models to capture fine-grained semantic correspondences, addressing a key challenge

in paraphrase identification at the word level.
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2) Compositional Distributional Semantics (Phrase Level): Phrase-level compositional distri-

butional semantics constitutes another facet of local information, which has predominantly been

explored within the context of recursive autoencoder-decoder architectural models that operate

based on syntactic parse trees inherent in sentences. In Paraphrase Identification (PI) models,

phrase-level attributes are typically construed as either aggregation of words or sub-structures

intrinsic to sentences. This avenue is particularly pursued when coarse-grained sentence-level at-

tributes fall short of adeptly encapsulating semantic nuances. Illustratively, recursive autoencoder

models designed for paraphrase identification learn phrase attributes for every node present in a

phrase tree. [98] put forth an extended Recursive Autoencoder (RAE) model, tailored for assimi-

lating feature vectors pertaining to phrases in syntactic trees. This innovation yielded impressive

accuracy across both syntactic and semantic constructs. Their introduced dynamic pooling layer,

responsible for computing fixed-size representations from variable inputs, alongside an iterative

RAE algorithm facilitating the reconstruction of all nodes in the decoder, culminated in a

comprehensive phrase-level representation. In parallel, [99] adopted the RAE model to acquire

representations for the entire input sentence and its constituent sub-phrases, derived from parse

trees. Their subsequent utilization of a Support Vector Machine (SVM) to classify aggregated

features from the output exhibited proficient performance in discerning concise paraphrases.

Concurrently, an alternative avenue was explored by [100], who postulated that the extraction of

phrase-level features can be enhanced through scored phrase pairs. They proposed an RNN

encoder-decoder model and seamlessly integrated it into a standard phrase-based Statistical

Machine Translation (SMT) system. The integration involved scoring each phrase pair within

the framework. Empirical assessments showcased a marked improvement in the extraction of

meaning with the integration of scored phrase pairs. It’s important to underscore, however, that

these models operating at the phrase level necessitated extensive manual engineering efforts to

achieve commendable performance [98].

In recent times, strides have been taken to enhance phrase alignment techniques within

transformer-based models. To exemplify, [102] introduced a phrase alignment algorithm en-

compassing a BERT-based Semantic Role Labeling (SRL) tagger as a precursor to alignment.

Subsequently, they adapted the Jonker-Volgenant algorithm to effectuate optimal phrase align-

ment. This approach reduced the requirement for labor-intensive manual crafting and introduced

a novel approach to tackling the challenges inherent in phrase-level tasks.
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3) Compositional Distributional Semantics (Sentence Level): Sentence-level challenges in

compositional distributional semantics focus on linking ”linguistic entities” at the sentence level.

These include both the internal structure of sentences and how they relate to each other. Most

traditional deep learning models for Paraphrase Identification (PI) look at sentences separately,

missing out on how they connect. To fix this, [103] created the skip-thought vector model. This

model combines the skip-gram approach with Gated Recurrent Units (GRUs) in an encoder-

decoder setup. It takes the word embedding idea from the skip-gram model [118] and applies

it to whole sentences, capturing their context. Unlike phrase and word-level methods, skip-

thought doesn’t need extra handmade features. It performs well against recursive networks that

use dynamic pooling for PI tasks. However, it still struggles with complex texts because it uses

broad sentence features that do not capture all the semantic details.

In their effort to extract sentence-level features, [104] developed a multi-faceted approach that

examines both the internal structure of sentences and how they interact. Moving away from

recursive models like Recurrent Neural Networks (RNNs) and Recursive Autoencoders (RAEs),

their Convolutional Neural Network (CNN) model avoids single-path compositions from syntactic

parsing. Instead, it uses max-pooling to create a wide feature map with multiple selections. Their

ARC-I architecture employs a multi-layer perceptron (MLP) to analyze sentence interactions.

However, ARC-I has a major flaw: it cannot capture sentence interactions during the forward

pass, only comparing sentences after their individual representations are fully formed. This results

in lost details about how the sentences interact. To fix this problem, they created the ARC-

II architecture, which applies 2D convolution to sentence interactions before the MLP layer.

The key innovation here is expanding 1D convolution, typically used for examining sentence

structure, into 2D convolution that can analyze relationships between sentences. Building on this

work, [106] introduced a tensor layer for interaction and combined it with K-Max pooling. This

approach picks out the most important interactions from each matrix, as shown in Fig. 3.

A different approach to sentence-level composition was proposed by [105]. They introduced at-

tention mechanisms to incorporate mutual influence into Convolutional Neural Networks (CNNs).

Their innovative method uses attention feature matrices to adjust convolution and pooling.

The first attention feature matrix comes from matching the representation matrices of the two

sentences. It acts as an extra feature map added to the convolutional layer along with the

representation matrices. This attention feature matrix guides the convolution process towards

”counterpart-biased” features, which are similar to mutual information. After that, they create a
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Fig. 3. The Tensor layer and k-Max pooling mechanism in [106]. This figure cites from [106].

second attention matrix from the convolution output, which improves the convolution features.

They added this second attention to help with better pooling when filtering larger-scale features.

Despite these advancements, earlier sentence-level composition methods still struggle to align

specific parts of two potential paraphrases.

4) Compositional Distributional Semantics (Multiple Granularities): The complex challenges

of varying granularity require Paraphrase Identification (PI) models to handle features at multiple

levels, rather than focusing on just one level, as we discussed earlier. The Recursive Autoencoder-

Decoder (RAE) model is a good example of this approach. It deals with this challenge by

calculating representations at all levels of a parse tree [98], [99]. However, RAE models rely

heavily on parsing trees, which are not always available for PI tasks. Another way to tackle

these multi-level granularity problems is to use convolutional methods to extract multi-level

features through stacked Convolutional Neural Networks (CNNs) or pooling techniques [108],

[109], [120]. For example, [108] created a single CNN architecture for multitask learning. To

address the multi-granularity issue, they used stacked Time-Delay Neural Networks (TDNNs)

with convolution, which extract local information at lower levels and global insights at higher

levels. Building on this, [120] suggested k-max pooling to handle multiple granularities. This
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method captures the k most important features, allowing the model to abstract higher-order and

long-range features. Additionally, the Max-TDNN model, with its built-in subgraphs, effectively

captures broad semantic connections between words that have few syntactic similarities. As a

result, this structure works well with difficult-to-parse texts like Tweets or short messages.

Yin et al. [109] introduced a novel approach with their BI-CNN-MI model. This model

analyzes interactions between sentences using two separate Convolutional Neural Networks

(CNNs), then condenses the features using logistic regression. They employ dynamic k-max

pooling, which uses various matrices including unigram similarity, short n-gram similarity,

long n-gram similarity, and sentence similarity. This approach enhances the system’s overall

performance. Their method allows for the concurrent use of different feature matrices in a single

convolution layer, with each matrix extracting unique sentence characteristics simultaneously. In

a related development, Tay et al. [107] presented co-stack residual affinity networks (CSRAN)

as a solution to this challenge. Their model incorporates a bidirectional alignment mechanism

that determines affinity weights by combining sequence pairs across stacked hierarchies. It also

includes a multi-level attention refinement component between stacked recurrent layers. This

architecture improves gradient flow and captures features at multiple levels of granularity by

utilizing information across all network hierarchies. Figure 4 illustrates the structure of this

architecture.

Transformer-based models leverage their architecture, attention mechanisms, and training

methodologies to comprehend multiple semantic levels and textual relationships. BERT [121]

introduced masked language modeling, which excels at understanding context from both pre-

ceding and succeeding words. This capacity to capture varied contextual layers makes it partic-

ularly valuable for tasks involving sentence-level semantics, such as paraphrase identification.

Expanding on BERT, [114] proposed a transfer fine-tuning approach using phrasal paraphrases.

This method enhances BERT’s ability to assess semantic equivalence between sentences without

increasing model size. ALBERT [122], a BERT variant, aims to optimize the balance between

model dimensions and training duration. It employs factorized embedding parameterization to

facilitate learning of dependencies across words and phrases. T5 [123] adopts a distinct approach,

recasting all Natural Language Processing (NLP) tasks as text-to-text problems, where both inputs

and outputs are in textual format. This transformation enables T5 to address diverse granularities

by embedding different information tiers in inputs and subsequently decoding relevant insights in

outputs. ELECTRA [124] introduces a novel training regime centered on predicting substituted



21

Fig. 4. Illustration of the proposed Co-Stack Residual Affinity Network (CSRAN) architecture [107]. Each color-coded matrix

represents the interactions between two layers of sequence A and sequence B. This figure cite from [107].

tokens within sentences. This innovation empowers the model to capture intricate relationships

and semantic nuances across various textual segments.

5) Paraphrase Identification Robust Training: Robust training data plays a crucial role in

paraphrase identification, as evidenced by trends in previous methodologies. This aspect typically

relates to a model’s ability to generalize. These approaches have heavily relied on carefully

curated datasets, such as the widely used Microsoft Paraphrase Corpus (MSRP) [125]. However,

they often struggle when faced with the complex task of identifying user-generated paraphrases, a

challenge rooted in the diverse nature of linguistic variation, including acronyms and specialized

emojis. A clear example of this limitation is seen in conventional paraphrase identification

methods based on matrix factorization, as shown in the work of [68]. Their approach, while

performing well on carefully curated datasets, falters when applied to more complex corpora,

failing to accurately identify paraphrases in the SemEval dataset. This stark contrast highlights the

gap between controlled experimental settings and the dynamic, often unique language use in real-

world contexts. Researchers have integrated attention mechanisms into paraphrase identification.
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Fig. 5. The hybrid deep neural architecture for robust paraphrase identification model by [115]. The architecture visually

encapsulates the symbiotic fusion of CNNs and LSTMs, exemplifying the innovation’s prowess. This figure is cited from [115].

A notable example is the work by [126], where they employed attention mechanisms to mitigate

noise in paraphrase detection, particularly in datasets from platforms like Twitter. Despite these

efforts, results have been modest, revealing the complex interplay between attention mechanisms

and the intricacies of informal language.

Agarwal et al. [115] introduced a novel hybrid deep neural architecture that advanced the

training of robust Paraphrase Identification (PI) models. Their approach combined two key

elements: Convolutional Neural Networks (CNNs) for pair-wise word similarity matching, and

Long Short-Term Memory networks (LSTMs) for comprehensive sentence modeling. This design

effectively captures both broad sentence-level features and specific word-level details, enabling

accurate paraphrase detection in noisy, brief Twitter posts. The model’s strength lies in its

ability to integrate semantic similarity information at both sentence and word levels, allowing

it to grasp semantic subtleties across different scales. When faced with grammatical errors or

extremely short texts, the word-level similarity component provides crucial insights. In other

situations, the sentence’s semantic representation becomes more relevant. Figure 5 presents a

visual representation of this innovative model architecture.

Tomar et al. [116] proposed an alternative approach to robust Paraphrase Identification (PI)

using a modified version of the decomposable attention model. This model breaks down the

prediction process into three key stages: Attend, Compare, and Aggregate. In essence, the
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Fig. 6. Learning curves for the Quora development set with and without pretraining on Paralex by using a noisy pretraining

method from [116]. This figure is cited from [116].

model aligns two elements using a neural attention variant, which leads to comparisons between

aligned phrases. These aligned phrases are then individually evaluated through a feedforward

network. The model subsequently combines the outputs via summation, employing an additional

feedforward network and a linear layer, which ultimately yields the label prediction. A significant

innovation introduced by the authors involves noisy pretraining. This method entails an initial

training phase for all model parameters. This preliminary training uses a relatively small corpus

consisting of examples automatically collected from the relevant domain. It is worth noting that

these examples inherently contain a certain level of noise due to their automatic acquisition

method.

The Transformer model [127] has addressed the challenge of robust training in the paraphrase

identification task through its unique architecture and mechanisms that enhance its generalization

capabilities. It has been widely acknowledged that robust training is crucial for handling linguistic

diversity and noise, and the Transformer’s self-attention mechanism and positional encodings

contribute significantly to this aspect. For instance, consider the sentence: ”The conference took

place in New York.” In this sentence, the position of ”New York” is crucial for understanding
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the location of the conference. The Transformer’s positional encodings help the model correctly

associate the words with their respective positions, enhancing its robustness in handling diverse

input sentences.

IV. PARAPHRASE WITH TYPES AND DATASETS

Paraphrase identification is a challenging task in many ways. One is the ambiguity of the

linguistic definition of paraphrase, which has resulted in a scarcity of manual annotations due

to the time-consuming and expert-level linguistic knowledge required. Additionally, there is a

lack of comprehensive research on the types of paraphrases present in popular training datasets

used in PI and related downstream tasks. As a result, PI is corpus-dependent and struggles to

detect sophisticated paraphrases. To address these challenges, we propose a refined typology,

REPARAPHRASE, that is more relevant to computational PI tasks, as well as a BERT-based

automatic paraphrase types classifier to assist in augmenting paraphrase datasets.

V. BERT-BASED AUTOMATIC PARAPHRASE TYPES CLASSIFIER

In order to address the issues of ambiguity of linguistic definitions and the scarcity of manual

annotation, we propose a refined typology called REPARAPHRASE and a BERT-based automatic

paraphrase types classifier.

The automatic paraphrase types classifier is based on the BERT structure [121]. BERT pre-

trained models are designed for fine-tuned tasks that use the whole sentence to make decisions,

such as sequence classification and token classification. In our case, ”BERT base uncased” is

chosen for paraphrase type classification. This pre-trained model has 110 million parameters and

does not make a distinction between capitalization.

The training dataset is a combination of the Extended Paraphrase Typology Corpus (ETPC)

[30] and manually annotated datasets. The ETPC dataset was designed for paraphrasing and

textual entailment, but it only focuses on a single dataset, leading to unbalanced paraphrase

types in the training corpus. Based on the ETPC dataset, we randomly selected paraphrase pairs

from six widely used corpora (MSRPC, ParaNMT-50M, PAWS, TaPaCo, ParaBank, WikiQA)

and manually annotated them following our REPARAPHRASE typology. Table IV in the original

text shows some basic information about the training corpus.

We performed our annotation using labelstudio [128]. We imported selected pairs into label

studio and added our typology as instruction. Before annotation, two annotators went through
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our typology and listed sample sentences for each type (see the section on paraphrase types).

They then labeled the same first 200 pairs to assess their agreement on different types. More

type details were added to the sample list for annotating the remaining pairs. In the training

process, we applied 5-fold Cross-Validation to evaluate our classifier on the annotated datasets.

We shuffled the datasets randomly and split them into five groups. We took each unique group

as a test data set and the remaining groups as a training data set. We then fit our model on the

training set and evaluated it on the test set. Finally, we summarized the performance by taking

the average scores. Table V shows the performance of a 5-fold evaluation on the last sample of

the training corpus.

A. Paraphrase corpus

Our review selects six paraphrase corpora primarily used in PI and related tasks.

a) MSRPC: Microsoft Research Paraphrase Corpus (MSRPC) is a corpus of 5,801 sentence

pairs selected from clustering news articles by SVM [125]. Human annotators labeled each pair as

a paraphrase or not. Its training subset has 4,076 sentence pairs, of which 2,753 are paraphrases,

and the test subset has 1,725 pairs, of which 1,147 are paraphrases.

b) ParaNMT-50M: ParaNMT-50M is a dataset of more than 50 million English-English

sentential paraphrase pairs. It generated pairs automatically by using neural machine translation

to translate the non-English side of a large parallel corpus, following [129].

c) PAWS: PAWS is a dataset constructed from Quora and Wikipedia sentences, with 108,463

well-formed paraphrase and non-paraphrase pairs with high lexical overlap. Examples are gen-

erated from controlled language models and back translation and given five human ratings each

in both phases. A final rule recombines annotated examples and balances the labels [130].

d) TaPaCo: Tapaco is a publicly available paraphrase corpus for 73 languages extracted

from the Tatoeba database. Tatoeba is a crowdsourcing project mainly geared toward language

learners. It aims to provide example sentences and translations for particular linguistic construc-

tions and words. The paraphrase corpus is created by populating a graph with Tatoeba sentences

and equivalence links between sentences “meaning the same thing”. This graph is then traversed

to extract sets of paraphrases. Several language-independent filters and pruning steps are applied

to remove uninteresting sentences. A manual evaluation performed on three languages shows

that between half and three-quarters of inferred paraphrases are correct and that most remaining

ones are either correct but trivial or near-paraphrases that neutralize a morphological distinction.
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The corpus contains a total of 1.9 million sentences, with 200 - 250 000 sentences per language

[131].

e) ParaBank: Following the approach of ParaNMT [129], ParaBank trains a Czech-English

neural machine translation (NMT) system to generate novel paraphrases of English reference

sentences. However, by adding lexical constraints to the NMT decoding procedure, they can

produce multiple high-quality sentential paraphrases per source sentence, yielding an English

paraphrase resource with more than 4 billion generated tokens and exhibiting greater lexical

diversity.

f) WikiQA: WikiQA is a dataset for open-domain question answering. The dataset contains

3,047 questions originally sampled from Bing query logs. Based on the user clicks, each question

is associated with a Wikipedia page presumed to be the topic of the question. In order to eliminate

answer sentence biases caused by keyword matching, they consider all the sentences in the

summary paragraph of the page as the candidate answer sentences, with labels on whether the

sentence is a correct answer to the question provided by crowd-sourcing workers. Among these

questions, about one-third of them contain correct answers in the answer sentence set [132].

B. Paragraph types distribution of datasets

The distribution of paraphrase types in existing datasets is unbalanced. Table VI shows the

paraphrase types distribution of MSRPC. ”Same Polarity Substitution” and ”Identity” are the

two top types that occupy 72.6% of total paraphrase pairs. We have 25 paraphrase types in our

annotated corpus, but not all paraphrase types occur in MSRPC. The last 12 types occupy only

4.38% of total pairs. This unbalanced distribution contributes to the fact that models performing

well on MSRPC do not detect all paraphrase types well. We applied our automatic paraphrase

types classifier on other datasets and found that unbalanced issues exist in all corpora. Table VII

shows the cumulative percentage of the top 3 types of each dataset. Some auto-generated datasets,

such as ParaNMT-50M and Parabank, using back-translation techniques, are more unbalanced in

their paraphrase types. Moreover, other manually labeled corpora were used for other paraphrase

tasks, which ignore the distribution. As discussed above, different paraphrase types have different

features that can be learned as paraphrase patterns for PI. Therefore, an unbalanced distribution

leads to insufficient patterns for deep learning models to detect all kinds of paraphrases.
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VI. NEW THREATS POSED BY LARGE LANGUAGE MODELS: CHATGPT, AND OTHER OPEN

SOURCE LLMS

Although traditional paraphrase identification approaches provide interpretable and robust

solutions to academic or general integrity detection issues, the rapid evolution of Large Language

Models (LLMs) raises new threats to paraphrase identification. The new decoding techniques such

as top-k and nucleus sampling contribute to more diverse and sophisticated generated sentences

compared to previous technologies. For example, prior paraphrase identification approaches

mainly focus on document-level or sentence-level features in plagiarism or fake news detection

applications. However, LLMs can deceive linguistic pattern detectors with advanced prompts

[133]. Paraphrase identification cannot help with detecting the ”hallucination” phenomenon in

LLMs which is about generating inconsistent sentences or fake content [134].

New threats also occur in the data collection process of paraphrase identification tasks. Para-

phrase identification models rely on the corpus they are trained to learn textual patterns. However,

the biases of data collection can negatively impact the performance and generalization of the

models. As we showed in the above experiments, the imbalanced distribution of paraphrase types

widely exists in the popular datasets which limits the models’ ability to generalize. At the same

time, text generated from LLMs is becoming less distinguishable from human-authored ones.

As a result, PI-based detection approaches are becoming less feasible in this LLMs era.

Another threat posed by LLMs is confidence calibration [135]. In the paraphrase identification

task, it is crucial not only to have high accuracy of classification but also to get the similarity

of paraphrase sentences. Although prior deep learning PI approaches have higher accuracy than

the traditional methods, research on accurate confidence scores in text generated from LLMs

is scarce. Therefore, the diversity of text produced by LLMs makes it challenging to create

similarity measures between paraphrased content.

Easy accessibility of open-source LLMs has led to the degradation of the effectiveness of

previous paraphrase identification methods due to LLMs’ exceptional ability to generate para-

phrases that are more difficult to detect. One solution to detect LLMs generated paraphrase is

white-box embedding watermarks which need researchers to have full access to the generative

models [136]. Open-source LLMs provide an alternative way for users to erase these watermarks,

leading to a challenge for paraphrase classification.

In summary, LLMs provide new challenges in solving paraphrase identification, but addressing



28

these threats is crucial to ensuring the effectiveness and reliability of paraphrase identification

methods in the era of LLMs.

VII. LIMITATION OF PARAPHRASE DETECTION METHODS

While paraphrase identification is based on comparing the semantic information of two doc-

uments, methods such as adversarial attacks have been adapted to confuse and disable natural

language processing systems for paraphrase identification. For instance, semantic collisions:

texts with very different semantic information being predicted as semantically similar by natural

language processing models, could be created to attack those systems [137], [138]. In [137], the

authors found that word scrambling—swapping words from a sentence, creating sentences with

the same lexicon but drastically different semantics—will cause paraphrase identification models

to make false positive predictions. While there are many other works proposed for adversarial

attacks for breaking NLP systems, it is beyond what we aim to review in this article.

While deep learning and large language models have been used for paraphrase identification

tasks, with great performance improvement over the older methods, it could be a concern that

those models could be biased and have drastically different performance when serving some

groups of users, especially groups that are underrepresented in the training data. While there

is no research done related to the social bias in paraphrase detection models, several research

studies have found social bias in prominent NLP models such as word embeddings and BERT

[139]–[141]. While great performance could be achieved by using recent pre-trained NLP models,

those models could inherit social bias from the base model, giving biased prediction results, or

having poor performance on cases related to underrepresented groups.

VIII. DISCUSSION

In this review, we present a comprehensive survey of the current state of paraphrase iden-

tification methods and datasets. We focus on both traditional approaches and deep learning-

based methods and discuss their strengths and limitations. We also introduce a new typology of

paraphrase types and show how different datasets exhibit varying distributions of these types.

Our analysis highlights the challenges faced by the paraphrase identification field, particularly the

lack of representative paraphrase types in existing training datasets. This calls for future research

to develop more robust and scalable methods, as well as larger and more diverse datasets, to

advance the state of the art in paraphrase identification.
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In this review, we present a new typology of paraphrase types, REPARAPHRASED, which

is more closely aligned with the tasks and challenges of automatic computational paraphrase

identification. This typology was refined based on the work of Kovatchev et al. [30], and Bhagat

and Hovy [29], and combines some previously overlapping types. By applying this typology to

existing datasets, we were able to analyze the distribution of paraphrase types and identify gaps

and limitations in the current state of the field. This new typology provides a useful framework

for future research on paraphrase identification and may help the community to develop more

effective and accurate methods.

According to Table II, most deep learning models on PI focus on the compositional distribu-

tional semantics of different levels. Structures and techniques are mainly designed to capture the

semantic features of paraphrased sentences. Although unsupervised and hybrid learning methods

show great performance on PI tasks, supervised learning methods dominated the deep learning

methods after 2014 due to the advance of deep neural networks.

Deep learning approaches offer several key advantages compared to knowledge-based and

corpus-based models. These include the ability to capture complex semantic and syntactic fea-

tures of natural language, handle variable-length sentences, and perform well on tasks that require

long-distance dependencies. Despite these advantages, deep learning methods for paraphrase

identification also face challenges, such as the need for large amounts of training data and the

difficulty of interpretability. Despite these challenges, deep learning continues to be a promising

area of research for improving the accuracy and effectiveness of paraphrase identification.

In this review, we surveyed six datasets comprising the majority of studies on paraphrase

identification (PI). We randomly sampled pairs from the datasets to create an annotated training

dataset. In section 4, we applied our automatic paraphrase types classifier to the six datasets and

found similar representational issues of unbalanced types. These issues prompted us to focus on

the missing patterns in datasets and other patterns that require more pairs for models to learn.

Our review found that some simple paraphrase types, such as ”Same Polarity Substitution”

and ”Identity,” often account for a significant proportion of all datasets. Traditional and early

deep-learning approaches can effectively capture these simple paraphrase types. As a result of

unbalanced datasets, the performance of some unsupervised learning traditional techniques and

early deep learning methods remain competitive, as shown in Table III.

PI can be useful for misinformation detection, and correction [142], [143]. Since misinfor-

mation often shares similar patterns of representation, it can be used as training data for deep
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learning models. Sophisticated PI techniques for specific domains, such as scientific papers and

fake news, can help users track the source of misinformation.

Misinformation is a pervasive problem, and paraphrase identification (PI) can be a valuable

tool for detecting and correcting it. By recognizing the similar patterns of representation that

misinformation often shares, PI techniques can help deep learning models learn to identify it

[142], [143]. And by specializing in specific domains, such as scientific papers and fake news,

PI can even help users track the source of the misinformation. So if you want to combat the

spread of false information, PI might be just the solution you’re looking for.

IX. CONCLUSION

Paraphrase identification (PI) is an important field of research with many potential applications.

In this review, we have examined the most widely used techniques for PI and proposed a

new paraphrase type typology. Our typology provides a more comprehensive and nuanced

understanding of the different types of paraphrases, which can be useful for the development of

new datasets and the training of supervised deep learning models.

We have also highlighted the need for better datasets in order to improve the performance

of PI techniques. Current datasets are often unbalanced, with some paraphrase types being

overrepresented and others underrepresented. This can lead to errors in classification and hinder

the ability of models to learn the patterns of complex paraphrase types. In order to overcome this

challenge, we need to produce new datasets that are more balanced and have a larger number

of instances.

The field of PI has many potential applications, including the detection of plagiarism and

misinformation. In the case of plagiarism, PI techniques can be used to identify instances where

the work of others has been inappropriately used without proper attribution. This can be especially

important in the education system, where plagiarism can be difficult to detect using traditional

methods.

Misinformation is another area where PI can be valuable. By recognizing the similar patterns

of representation that misinformation often shares, PI techniques can help deep learning models

learn to identify it. And by specializing in specific domains, such as scientific papers and fake

news, PI can even help users track the source of the misinformation. This can be a powerful

tool for combatting the spread of false information and promoting the dissemination of accurate

and reliable information.
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In future work, we aim to produce a new dataset based on our proposed paraphrase types and

evaluate which models work best with this dataset. We are excited about the potential of PI to

improve many aspects of society, and we believe that continued research in this field will lead

to significant advances.
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[30] V. Kovatchev, M. A. Martı́, and M. Salamó, “ETPC - a paraphrase identification corpus annotated with extended

paraphrase typology and negation,” in Proceedings of the Eleventh International Conference on Language Resources

and Evaluation (LREC 2018). European Language Resources Association (ELRA), 2018. [Online]. Available:

https://aclanthology.org/L18-1221

[31] A. Fujita and P. Isabelle, “Expanding paraphrase lexicons by exploiting generalities,” ACM Transactions on

Asian and Low-Resource Language Information Processing, vol. 17, no. 2, pp. 1–36, 2018. [Online]. Available:

https://dl.acm.org/doi/10.1145/3160488

[32] M. AL-Smadi, Z. Jaradat, M. AL-Ayyoub, and Y. Jararweh, “Paraphrase identification and semantic text

similarity analysis in arabic news tweets using lexical, syntactic, and semantic features,” Information Processing

and Management: an International Journal, vol. 53, no. 3, pp. 640–652, 2017. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0306457316302382

[33] A. Fujita and S. Sato, “A probabilistic model for measuring grammaticality and similarity of automatically generated

paraphrases of predicate phrases,” in Proceedings of the 22nd International Conference on Computational Linguistics

(Coling 2008). Manchester, UK: Coling 2008 Organizing Committee, Aug. 2008, pp. 225–232. [Online]. Available:

https://aclanthology.org/C08-1029

[34] G. A. Miller, “WordNet: A lexical database for english,” Commun. ACM, vol. 38, no. 11, pp. 39–41,

1995, place: New York, NY, USA Publisher: Association for Computing Machinery. [Online]. Available:

https://doi.org/10.1145/219717.219748

[35] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and knowledge-based measures of text semantic similarity.”

in Proceedings of the National Conference on Artificial Intelligence, vol. 1, 2006.

[36] A. Finch, Y.-S. Hwang, and E. Sumita, “Using machine translation evaluation techniques to determine sentence-level

semantic equivalence,” in Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. [Online].

Available: https://aclanthology.org/I05-5003

[37] A. Cocos, M. Apidianaki, and C. Callison-Burch, “Mapping the paraphrase database to WordNet,” in Proceedings

of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017). Association for Computational

Linguistics, 2017, pp. 84–90. [Online]. Available: http://www.aclweb.org/anthology/S17-1009

[38] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of machine translation,”

in Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia,

Pennsylvania, USA: Association for Computational Linguistics, Jul. 2002, pp. 311–318. [Online]. Available:

https://aclanthology.org/P02-1040

[39] G. Doddington, “Automatic evaluation of machine translation quality using n-gram co-occurrence statistics,” in Proceed-

ings of the Second International Conference on Human Language Technology Research, ser. HLT ’02. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 2002, p. 138–145.

[40] K.-Y. Su, M.-W. Wu, and J.-S. Chang, “A new quantitative quality measure for machine translation systems,” in

Proceedings of the 14th Conference on Computational Linguistics - Volume 2, ser. COLING ’92. USA: Association

for Computational Linguistics, 1992, p. 433–439. [Online]. Available: https://doi.org/10.3115/992133.992137

https://doi.org/10.1145/502512.502559
https://aclanthology.org/J13-3001
https://aclanthology.org/L18-1221
https://dl.acm.org/doi/10.1145/3160488
https://www.sciencedirect.com/science/article/pii/S0306457316302382
https://www.sciencedirect.com/science/article/pii/S0306457316302382
https://aclanthology.org/C08-1029
https://doi.org/10.1145/219717.219748
https://aclanthology.org/I05-5003
http://www.aclweb.org/anthology/S17-1009
https://aclanthology.org/P02-1040
https://doi.org/10.3115/992133.992137


34

[41] C. Tillmann, S. Vogel, H. Ney, A. Zubiaga, and H. Sawaf, “Accelerated dp based search for statistical translation,” in In

European Conf. on Speech Communication and Technology, 1997, pp. 2667–2670.

[42] S. Wan, M. Dras, R. Dale, and C. Paris, “Using dependency-based features to take the ’para-farce’ out of paraphrase,”

in Proceedings of the Australasian Language Technology Workshop 2006, 2006, pp. 131–138. [Online]. Available:

https://aclanthology.org/U06-1019

[43] N. Madnani, J. Tetreault, and M. Chodorow, “Re-examining machine translation metrics for paraphrase identification,” in

Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies. Association for Computational Linguistics, 2012, pp. 182–190. [Online]. Available:

https://aclanthology.org/N12-1019

[44] M. G. Snover, N. Madnani, B. Dorr, and R. Schwartz, “Ter-plus: paraphrase, semantic, and alignment enhancements

to translation edit rate,” Machine Translation, vol. 23, no. 2/3, pp. 117–127, 2009. [Online]. Available:

http://www.jstor.org/stable/40783463

[45] M. Denkowski and A. Lavie, “Extending the METEOR machine translation evaluation metric to the phrase level,”

in Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association

for Computational Linguistics. Los Angeles, California: Association for Computational Linguistics, Jun. 2010, pp.

250–253. [Online]. Available: https://aclanthology.org/N10-1031

[46] N. Habash and A. Elkholy, “Sepia: surface span extension to syntactic dependency precision-based mt evaluation,” in

Proceedings of the NIST metrics for machine translation workshop at the association for machine translation in the

Americas conference, AMTA-2008. Waikiki, HI. Citeseer, 2008.

[47] S. Parker, “Badger: A new machine translation metric,” 2008.

[48] Y. S. Chan and H. T. Ng, “MAXSIM: A maximum similarity metric for machine translation evaluation,” in Proceedings

of ACL-08: HLT. Columbus, Ohio: Association for Computational Linguistics, Jun. 2008, pp. 55–62. [Online].

Available: https://aclanthology.org/P08-1007

[49] M. Potthast, A. Eiselt, B. Stein, A. BarrónCedeno, and P. Rosso, “Pan plagiarism corpus pan-pc-09,” Online: http://www.

uniweimar. de/cms/medien/webis/research/corpora/pan-pc-09. html–Date accessed, vol. 2, no. 03, p. 2010, 2009.

[50] A. Taylor, M. Marcus, and B. Santorini, “The penn treebank: An overview,” 2003.

[51] D. Das and N. A. Smith, “Paraphrase identification as probabilistic quasi-synchronous recognition,” in Proceedings

of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP. Association for Computational Linguistics, 2009, pp. 468–476. [Online].

Available: https://aclanthology.org/P09-1053

[52] G. Sidorov, “Syntactic dependency based n-grams in rule based automatic english as second language grammar correction,”

Int. J. Comput. Linguistics Appl., vol. 4, pp. 169–188, 2013.

[53] Y. W. Wong and R. Mooney, “Learning for semantic parsing with statistical machine translation,” in Proceedings of

the Human Language Technology Conference of the NAACL, Main Conference. New York City, USA: Association for

Computational Linguistics, Jun. 2006, pp. 439–446. [Online]. Available: https://aclanthology.org/N06-1056

[54] L. Zettlemoyer and M. Collins, “Learning context-dependent mappings from sentences to logical form,” in Proceedings

of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural

Language Processing of the AFNLP. Suntec, Singapore: Association for Computational Linguistics, Aug. 2009, pp.

976–984. [Online]. Available: https://aclanthology.org/P09-1110

[55] X. Sun, X. Liu, J. Hu, and J. Zhu, “Empirical studies on the nlp techniques for source code data preprocessing,” in

Proceedings of the 2014 3rd international workshop on evidential assessment of software technologies, 2014, pp. 32–39.

[56] J. Bao, N. Duan, M. Zhou, and T. Zhao, “Knowledge-based question answering as machine translation,” in Proceedings

https://aclanthology.org/U06-1019
https://aclanthology.org/N12-1019
http://www.jstor.org/stable/40783463
https://aclanthology.org/N10-1031
https://aclanthology.org/P08-1007
https://aclanthology.org/P09-1053
https://aclanthology.org/N06-1056
https://aclanthology.org/P09-1110


35

of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association

for Computational Linguistics, 2014, pp. 967–976. [Online]. Available: http://aclweb.org/anthology/P14-1091

[57] L. Dong, F. Wei, S. Liu, M. Zhou, and K. Xu, “A statistical parsing framework for sentiment classification,” Computational

Linguistics, vol. 41, no. 2, pp. 293–336, 2015. [Online]. Available: https://direct.mit.edu/coli/article/41/2/293-336/1511

[58] H. Bouamor, A. Max, and A. Vilnat, “Multitechnique paraphrase alignment: A contribution to pinpointing sub-sentential

paraphrases,” ACM Transactions on Intelligent Systems and Technology, vol. 4, no. 3, pp. 1–27, 2013. [Online].

Available: https://dl.acm.org/doi/10.1145/2483669.2483677

[59] J. Flanigan, S. Thomson, J. Carbonell, C. Dyer, and N. A. Smith, “A discriminative graph-based parser for the abstract

meaning representation,” in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers). Association for Computational Linguistics, 2014, pp. 1426–1436. [Online]. Available:

http://aclweb.org/anthology/P14-1134

[60] X. Peng, L. Song, and D. Gildea, “A synchronous hyperedge replacement grammar based approach for AMR

parsing,” in Proceedings of the Nineteenth Conference on Computational Natural Language Learning. Association for

Computational Linguistics, 2015, pp. 32–41. [Online]. Available: http://aclweb.org/anthology/K15-1004

[61] J. Zhou, F. Xu, H. Uszkoreit, W. Qu, R. Li, and Y. Gu, “AMR parsing with an incremental joint model,” in Proceedings

of the 2016 Conference on Empirical Methods in Natural Language Processing. Association for Computational

Linguistics, 2016, pp. 680–689. [Online]. Available: http://aclweb.org/anthology/D16-1065

[62] I. Konstas, S. Iyer, M. Yatskar, Y. Choi, and L. Zettlemoyer, “Neural AMR: Sequence-to-sequence models for parsing

and generation,” 2017. [Online]. Available: http://arxiv.org/abs/1704.08381

[63] F. Issa, M. Damonte, S. B. Cohen, X. Yan, and Y. Chang, “Abstract meaning representation for paraphrase detection,” in

Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, 2018, pp.

442–452. [Online]. Available: http://aclweb.org/anthology/N18-1041

[64] R. Blloshmi, R. Tripodi, and R. Navigli, “XL-AMR: Enabling cross-lingual AMR parsing with transfer

learning techniques,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP). Association for Computational Linguistics, 2020, pp. 2487–2500. [Online]. Available:

https://www.aclweb.org/anthology/2020.emnlp-main.195

[65] L. F. R. Ribeiro, Y. Zhang, and I. Gurevych, “Structural adapters in pretrained language models for AMR-to-text

generation,” 2021. [Online]. Available: http://arxiv.org/abs/2103.09120

[66] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent semantic analysis,” Discourse Processes, vol. 25,

no. 2-3, pp. 259–284, 1998. [Online]. Available: https://doi.org/10.1080/01638539809545028

[67] W. Guo and M. Diab, “Modeling sentences in the latent space,” in Proceedings of the 50th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers). Jeju Island, Korea: Association for Computational

Linguistics, Jul. 2012, pp. 864–872. [Online]. Available: https://aclanthology.org/P12-1091

[68] Y. Ji and J. Eisenstein, “Discriminative improvements to distributional sentence similarity,” in EMNLP, 2013.

[69] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Proceedings of the 13th International

Conference on Neural Information Processing Systems, ser. NIPS’00. Cambridge, MA, USA: MIT Press, 2000, p.

535–541.

[70] W. Yin and H. Schütze, “Discriminative phrase embedding for paraphrase identification,” 2016. [Online]. Available:

http://arxiv.org/abs/1604.00503

[71] A. A. Markov, “Essai d’une recherche statistique sur le texte du roman “Eugene Onegin” illustrant la liaison des epreuve en

chain (‘Example of a statistical investigation of the text of “Eugene Onegin” illustrating the dependence between samples

http://aclweb.org/anthology/P14-1091
https://direct.mit.edu/coli/article/41/2/293-336/1511
https://dl.acm.org/doi/10.1145/2483669.2483677
http://aclweb.org/anthology/P14-1134
http://aclweb.org/anthology/K15-1004
http://aclweb.org/anthology/D16-1065
http://arxiv.org/abs/1704.08381
http://aclweb.org/anthology/N18-1041
https://www.aclweb.org/anthology/2020.emnlp-main.195
http://arxiv.org/abs/2103.09120
https://doi.org/10.1080/01638539809545028
https://aclanthology.org/P12-1091
http://arxiv.org/abs/1604.00503


36

in chain’),” Izvistia Imperatorskoi Akademii Nauk (Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg),
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Spelling Changes

Synthetic / Analytic Substitution
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Negation Switching

Diathesis Alternation

Subordination And Nesting Changes

Coordination Changes
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D
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co
ur

se
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Syntax / Discourse Changes

Direct/Indirect Substitution

Sentence Modality Changes

Punctuation Changes

O
th

er

C
ha

ng
es

Change Of Order

Change of Format

Addition / Deletion Changes

Entailment

Verbatim

Identity
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TABLE II

DEEP LEARNING MODELS’ RESEARCH CHALLENGES ON PI

Model Year Structures Challenges of PI Learning

Method

Datasets

[91] 2012 SWEMs Compositional Distributional Semantics (Word Level) Unsupervised WordSim353

[92] 2014 SWEMs Compositional Distributional Semantics (Word Level) Unsupervised Sem 2013

[93] 2014 SWEMs Compositional Distributional Semantics (Word Level) Unsupervised TREC

[94] 2016 Hybrid Compositional Distributional Semantics (Word Level) Supervised SICK et al.

[95] 2016 RNNs Compositional Distributional Semantics (Word Level) Supervised SNLI

[96] 2018 SWEMs Compositional Distributional Semantics (Word Level) Supervised Yahoo et al.

[97] 2018 RNNs Compositional Distributional Semantics (Word Level) Supervised SNLI et al.

[98] 2011 RAEs Compositional Distributional Semantics (Phrase Level) Hybrid MSRP

[99] 2011 RAEs Compositional Distributional Semantics (Phrase Level) Unsupervised MSRP et

al.

[100]

2014 RNNs Compositional Distributional Semantics (Phrase Level) Supervised WMT’14

[101]

2015 RNNs Compositional Distributional Semantics (Phrase Level) Supervised SemEval2014

[102]

2022 Transformer Compositional Distributional Semantics (Phrase Level) Supervised PAWS et

al.

[103]

2015 Hybrid Compositional Distributional Semantics (Sentence Level) Unsupervised SICK

[104]

2014 CNNs Compositional Distributional Semantics (Sentence Level) Supervised MSRP

[105]

2015 CNNs Compositional Distributional Semantics (Sentence Level) Supervised MSRP et

al.

[106]

2016 RNNs Compositional Distributional Semantics (Sentence Level) Supervised QA

[107]

2018 RNNs Compositional Distributional Semantics (Multiple Gran-

ularity)

Supervised SNLI et al.

[108]

2008 CNNs Compositional Distributional Semantics (Multiple Gran-

ularity)

Semi-

Supervised

PropBank

[109]

2015 CNNs Compositional Distributional Semantics (Multiple Gran-

ularity)

Unsupervised MSRP

[110]

2017 Self-

attention

Compositional Distributional Semantics (Multiple Gran-

ularity)

Supervised SICK et al.

[111]

2015 CNNs Compositional Distributional Semantics (Multiple Gran-

ularity)

Hybird MSRP et

al.

[112]

2017 RNNs Compositional Distributional Semantics (Multiple Gran-

ularity)

Supervised Quora

[113]

2017 Hybrid Compositional Distributional Semantics (Multiple Gran-

ularity)

Supervised MultiNLI

[114]

2021 Transformer Compositional Distributional Semantics (Multiple Gran-

ularity)

Supervised PAWS et

al.

[115]

2018 CNNs Robust Training Supervised MSRP et

al.

[116]

2017 Decomposable

Attention

Robust Training Supervised Quora
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TABLE III

DEEP LEARNING METHODS PERFORMANCE OF PI ON MSRPC

Model Year Encoder Embeddings Accuracy F1

[104] 2014 CNN+MLP+Pooling Unspervised Embeddings 69.9 80.91

[96] 2018 SWEM+Pooling GloVe 71.5 81.3

[103] 2015 RNN+GNU Word2Vec 73 82

[91] 2012 NLM-BNC [108] 73.5 82.33

[98] 2011 RAE [108] 76.8 83.6

[43] 2012 Metrics-based None 77.4 84.1

[109] 2015 Bi+CNN+MI [108] 78.1 84.4

[115] 2018 CNN+LSTM+Pooling Word2Vec 77.7 84.5

[68] 2013 Factorization-based None 80.41 84.59

[111] 2015 CNN+Pooling POS 78.6 84.73

[105] 2015 Bi+CNN+Attention Word2Vec 78.9 84.8

TABLE IV

CHARACTERISTICS OF THE TRAINING CORPUS

Property

Original text units 2422

Text units after adding annotation 4422

Type of text units sentences pair with ’[SEP]’ in the middle

Words in original corpus 56783

Unique words in original corpus 6139

Max(words) in original pairs 66

Mean(words) in original pairs 3

StDev(words) in original pairs 11.50

Words in new corpus 177029

Unique words in new corpus 12205

Max.(words) in new pairs 279

Mean(words) in new pairs 3

StDev(words) in new pairs 15.20
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TABLE V

PERFORMANCE OF 5-FOLD EVALUATION

Paraphrase type Precision Recall F1-score Support

Identity 0.99 1.00 0.99 286

Inflectional Changes 0.97 0.86 0.91 37

Same Polarity Substitution 0.96 0.97 0.96 73

Synthetic/Analytic Substitution 0.91 1.00 0.95 52

Inflectional Changes 0.87 1.00 0.93 13

Change of Order 0.91 0.70 0.79 30

Punctuation Changes 0.92 0.65 0.76 17

Subordination and Nesting Changes 1.00 1.00 1.00 18

Spelling Changes 1.00 0.64 0.78 14

Syntax/Discourse Structure Changes 0.67 1.00 0.80 4

Change of Format 0.89 0.89 0.89 9

Functional Word Substitution 0.86 1.00 0.92 6

Ellipsis 1.00 1.00 1.00 2

Derivational Changes 0.31 1.00 0.48 5

Diathesis Alternation 1.00 0.75 0.86 4

Coordination changes 0.86 0.75 0.80 8

Direct/indirect Style Alternations 1.00 0.67 0.80 3

Non-Paraphrase 0.00 0.00 0.00 2

Opposite Polarity Substitution 0.00 0.00 0.00 1

Accuracy 0.95

Macro avg 0.80 0.78 0.77 884

Weighted avg 0.95 0.95 0.95 884
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TABLE VI

PARAPHRASE TYPES DISTRIBUTION OF MSRPC

Type Counts

Same Polarity Substitution (SPS) 1711

Identity (I) 1503

Synthetic/Analytic Substitution (S/AS) 263

Inflectional changes (IC) 168

Change of Order (CO) 152

Punctuation Changes (PC) 136

Subordination and Nesting Changes (SNC) 97

Spelling Changes (SC) 67

Syntax/Discourse Structure Changes (S/DSC) 64

Change of Format (CF) 62

Functional Word Substitution (FWS) 37

Ellipsis (Ell) 29

Derivational Changes (DC) 28

Diathesis Alternation (DA) 27

Coordination Changes (CC) 20

Converse Substitution (CS) 16

Direct/Indirect Style Alternations (D/ISA) 16

Addition/Deletion (A/D) 7

Sentence Modality Changes (SMC) 5

Entailment (Ent) 4

Opposite Polarity Substitution (OPS) 3

Negation Switching (NS) 2

TABLE VII

PARAGRAPH TYPES DISTRIBUTION OF DATASETS

Dataset Most frequent Second most frequent Third most frequent Accumulated

MSRPC SPS (38.6%) I (34.0%) S/AS (5.9%) 78.6%

Parabank SPS (68.1%) I (27.9%) PC (1.5%) 97.5%

ParaNMT-50M SPS (90.9%) I (1.9%) PC (1.7%) 94.5%

PAWS SPS (66.3%) SMC (13.8%) I (6.6%) 86.7%

TaPaCo SPS (73.7%) PC (21.1%) I (1.5%) 96.3%

WikiQA I (63.0%) PC(28.4%) S/DSC (2.7%) 94.1%
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